Cuticular Wax Accumulation Is Associated with Drought Tolerance in Wheat Near-Isogenic Lines

نویسندگان

  • Jun Guo
  • Wen Xu
  • Xiaocong Yu
  • Hao Shen
  • Haosheng Li
  • Dungong Cheng
  • Aifeng Liu
  • Jianjun Liu
  • Cheng Liu
  • Shijie Zhao
  • Jianmin Song
چکیده

Previous studies have shown that wheat grain yield is seriously affected by drought stress, and leaf cuticular wax is reportedly associated with drought tolerance. However, most studies have focused on cuticular wax biosynthesis and model species. The effects of cuticular wax on wheat drought tolerance have rarely been studied. The aims of the current study were to study the effects of leaf cuticular wax on wheat grain yield under drought stress using the above-mentioned wheat NILs and to discuss the possible physiological mechanism of cuticular wax on high grain yield under drought stress. Compared to water-irrigated (WI) conditions, the cuticular wax content (CWC) in glaucous and non-glaucous NILs under drought-stress (DS) conditions both increased; mean increase values were 151.1 and 114.4%, respectively, which was corroborated by scanning electronic microscopy images of large wax particles loaded on the surfaces of flag leaves. The average yield of glaucous NILs was higher than that of non-glaucous NILs under DS conditions in 2014 and 2015; mean values were 7368.37 kg·ha-1 and 7103.51 kg·ha-1. This suggested that glaucous NILs were more drought-tolerant than non-glaucous NILs (P = 0.05), which was supported by the findings of drought tolerance indices TOL and SSI in both years, the relatively high water potential and relative water content, and the low ELWL. Furthermore, the photosynthesis rate (Pn ) of glaucous and non-glaucous wheat NILs under DS conditions decreased by 7.5 and 9.8%, respectively; however, glaucous NILs still had higher mean values of Pn than those of non-glaucous NILs, which perhaps resulted in the higher yield of glaucous NILs. This could be explained by the fact that glaucous NILs had a smaller Fv/Fm reduction, a smaller PI reduction and a greater ABS/RC increase than non-glaucous NILs under DS conditions. This is the first report to show that wheat cuticular wax accumulation is associated with drought tolerance. Moreover, the leaf CWC can be an effective selection criterion in the development of drought-tolerant wheat cultivars.

منابع مشابه

Over-Expression of SlSHN1 Gene Improves Drought Tolerance by Increasing Cuticular Wax Accumulation in Tomato

Increasing cuticular wax accumulation in plants has been associated with improving drought tolerance in plants. In this study, a cDNA clone encoding the SlSHN1 transcription factor, the closest ortholog to WIN/SHN1 gene in Arabidopsis, was isolated from tomato plant. Expression analysis of SlSHN1 indicated that it is induced in response to drought conditions. The over-expression of SlSHN1 in to...

متن کامل

Increased accumulation of cuticular wax and expression of lipid transfer protein in response to periodic drying events in leaves of tree tobacco.

Cuticular wax deposition and composition affects drought tolerance and yield in plants. We examined the relationship between wax and dehydration stress by characterizing the leaf cuticular wax of tree tobacco (Nicotiana glauca L. Graham) grown under periodic dehydration stress. Total leaf cuticular wax load increased after each of three periods of dehydration stress using a CH2Cl2 extraction pr...

متن کامل

The MYB96 transcription factor regulates cuticular wax biosynthesis under drought conditions in Arabidopsis.

Drought stress activates several defense responses in plants, such as stomatal closure, maintenance of root water uptake, and synthesis of osmoprotectants. Accumulating evidence suggests that deposition of cuticular waxes is also associated with plant responses to cellular dehydration. Yet, how cuticular wax biosynthesis is regulated in response to drought is unknown. We have recently reported ...

متن کامل

Molecular and Evolutionary Mechanisms of Cuticular Wax for Plant Drought Tolerance

Cuticular wax, the first protective layer of above ground tissues of many plant species, is a key evolutionary innovation in plants. Cuticular wax safeguards the evolution from certain green algae to flowering plants and the diversification of plant taxa during the eras of dry and adverse terrestrial living conditions and global climate changes. Cuticular wax plays significant roles in plant ab...

متن کامل

Genetic Interactions Underlying the Biosynthesis and Inhibition of β-Diketones in Wheat and Their Impact on Glaucousness and Cuticle Permeability

Cuticular wax composition greatly impacts plant responses to dehydration. Two parallel pathways exist in Triticeae for manipulating wax composition: the acyl elongation, reduction, and decarbonylation pathway that is active at the vegetative stage and yields primary alcohols and alkanes, and the β-diketone pathway that predominates at the reproductive stage and synthesizes β-diketones. Variatio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

متن کامل
عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2016